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Abstract

The development of walking controllers for legged robotics is a complex process
that involves careful modeling of the system and robust controller design. If the
model of the system is not perfect, non-negligible uncertainty could be introduced
into the system, which can result in instability. To counteract this effect of uncer-
tainty, stochastic methods, namely reinforcement learning (RL), have been used to
train legged robots to achieve stable gaits. Many of these RL methods lie in the
domain of imitation learning, but this may be constricting to the reinforcement
learning policy’s exploration process. In addition, a high quality reference tra-
jectory must be first defined before the RL training process, and this process can
be tedious. On the other hand, model-free RL methods give learning agents the
freedom to explore their state spaces, but the resulting gaits may not be optimal
nor natural for sim-to-real transfer. Recent work from [10] created an intuitive way
to design reward functions to guide a model-free RL agent to learn a spectrum of
common bipedal gaits. This work balanced the constraining, but well-specified,
method of imitation learning and freeing, but under-specified, method of model-
free RL. Since quadrupeds are close relatives of bipeds, there is a natural curiosity
to see if this framework would work for quadrupeds. This Masters project aims to
answer this question.

1 Introduction

Currently, using reinforcement learning (RL) to learn common quadrupedal gaits, such as bounding,
trotting, or galloping, is not yet a solved problem. According to the current state of the art, a key
challenge in RL is to utilize the reward function in order to manifest a particular walking gait. When
designing a reward function for a locomotion gait, the reward function must be specific enough to
produce desired gait characteristics while also not being overly constraining. [10]

It is common for the use of reference trajectories as a means to guide RL algorithms to learn policies
that minimize deviation from such reference trajectories all while being robust to environmental
uncertainty and disturbances. [12] [7] [13] However, though the policies can learn to mimic such
reference trajectories very well, flexibility of the policy is sacrificed.

On the other hand, reference-free RL methods, such as those used in OpenAI Gym benchmarks [1],
provide the chance for a policy to explore more of its state-space, but the resulting policy might not
be well suited for real-life robots. In addition, tuning a reward function is a tedious process that
involves trial-and-error for complex systems, such as real robots with high dimensionality.

Recent work from [10] achieved a balance between reference-trajectory based RL methods and
model-free RL methods by introducing a parametric reward function that dynamically changes based
on swing (foot lifted off of the ground) and stance (foot in contact with ground) phases of a bipedal
robot. By utilizing the complementary physical traits of swing and stance phases, one can intuitively
design a reward function that measures if a robot’s leg is in its respective correct leg phase during
a time step. This is done through incorporating information about the foot velocities (meaning no
contact with the ground) and foot forces (meaning existing contact with the ground) into the reward
function.

The hypothesis of this Masters project is to determine if the extrapolation from [10] to quadrupeds
will be able to train a quadruped to walk with a common quadrupedal gait. By re-writing the
algorithm from scratch as a Python RL library with support for the MIT Mini-Cheetah and Mujoco
Half-Cheetah, this project evaluated if the original method in [10] works for quadrupeds. By refining
the original algorithm, a planar approximation of a quadruped was successfully trained to perform
various gaits such as galloping, pronking and standing in simulation.
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Figure 1: Illustration of swing phase (in blue) for front left and rear right legs and stance phases (in
green) of front right and rear left legs.

2 Framework Preliminaries

2.1 Reinforcement Learning Framework

This project involves training in the discrete time space. The environment is characterized by a
discrete-time Markov Decision Process (MDP) with a continuous state space S, continuous action
space A, a transition function T (s, a, s0), and a reward function R(s, t). The control policy is a
stochastic mapping ⇡(a|s) from observations to actions, and actions will be sampled from our policy
⇡. The general goal of RL, to maximize

J(⇡) = E
h
⌃T

t=0�
tR(st, t)

i
(1)

will be used by this project. The discount factor � 2 [0, 1], and st is a random variable drawn from a
Gaussian distribution that represents the state at time t while following actions from the policy ⇡.

2.2 Describing Legged Locomotion

All common quadrupedal gaits can be defined by periodic swing phases and stance phases. For swing
phases, a foot should be in the air with some finite velocity and have zero reaction force with the
ground. The opposite is true for stance phases. Reward function design will be guided with these
principles. Figure 1 illustrates swing and stance phases for a quadrupedal robot.

3 Periodic Reward Composition Design

3.1 Normalization of Time

Since legged locomotion is periodic in behavior, it is natural to incorporate a design variable that is
also periodic in nature. Time t in this project is indexed via a cycle time variable, �, which cycles
through normalized time. � is defined as

� =
k

L
mod 1.0 (2)

where k is a counter variable that increments by 1 every single time the low-level controller to the
quadruped is called. L is a user-defined parameter that determines how many iterations of calling the
low-level controller equates to a full period. � 2 [0.0, 1.0] which normalizes time. For example, if
the gym environment runs at 500 Hz and L = 1000, one full period will equate to 2 seconds.
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Figure 2: Relationship between ratio r and normalized time � for a leg that starts in a swing phase.
Here, r ⇡ 0.5. In green shows the stochasticity described in Section 3.2. The phase coefficients ci
shown are described in Section 3.4. Here, during a swing phase, the force phase coefficient cswing, frc
= -1 to penalize a contact force while it is the opposite for cswing, vel = 1. As the environment’s high
level clock switches from a swing to a stance phase, the coefficients switch positvity to reward foot
force instead of foot velocity.

3.2 Characterization of Phases in Normalized Time

Since � is normalized between 0.0 and 1.0, it is very easy to determine the ratio of the interval L
that should be characterized by a swing phase. The phase ratio r defines the fraction of L discrete
normalized time steps that will be in swing phase. 1�r (plus minus some uncertainty) determines the
fraction of L discrete normalized time steps that will be in a stance phase. In my code implementation,
the stance phase is constrained to start immediately after the swing phase. In addition, since RL is a
stochastic framework, r is not deterministic. To facilitate the stochasticity of the MDP, the ratio r is
drawn from a Von-Mises distribution:

r ⇠ �(a,) (3)

where  is a variance parameter that determines how close are samples to the mean a, which is picked
by the user. For legged locomotion, a good range for the value of a 2 [0.45, 0.7]. For  ! 1, the
standard deviation � ! 0 and the distribution quickly becomes deterministic. For this project,  was
set to 5000. An illustration is provided in Figure 2.

3.3 Phase Parameterization of Reward Function

The reward function is designed as a function of � and the state s. The reward function is defined as:

R(s,�) =
X

i

Ri(s,�), Ri(s,�) = ↵i · qi(s,�), with
X

i

↵i = 1.0 (4)

Ri is an individual reward component to specify a particular quadrupedal gait characteristic during
a particular phase; for example, the height of the base or the orientation of the base. ↵i is a tuning
coefficient for the reward component. qi(s) is a normalized reward in the form of

qi(s,�) = e�|E| , where E is an error calculation. (5)
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So by the definition of the sum of ↵i and the decaying exponentiation of qi(s), the total reward
R(s,�) will be bounded between 0.0 and 1.0.

3.4 Using Phase Coefficients for Swing and Stance Phases

NOTE: The following applies to a unipedal example to maintain compactness and clarity of explana-

tion.

In (4), normalized reward components qi(s,�) are dependent on � for reward components that
correspond to the calculation of reward for foot forces and foot velocities. For these calculations, a
new type of variable called phase coefficients c(�) are introduced.

The purpose of phase coefficients is to give information to the reward component if a contact force or
a foot velocity should contribute a reward or penalty for the error calculation in qi(s,�). For example,
if a leg is in a swing phase, a foot contact should be penalized but on the other hand, if a leg is in
stance phase, a foot contact should be rewarded. From this information, a phase coefficient for a
contact force, cfrc, and a phase coefficient for a foot velocity, cvel can be defined. In a swing phase,
cfrc should be negative while cvel should be positive, and vice-versa for a stance phase. In order to
calculate cfrc and cvel to satisfy these traits and to prevent discontinuities in the reward function, they
are calculated as

cfrc = tanh(� · (�� r)) , (6)
cvel = �cfrc , (7)

where � is a steepness coefficient to determine how steep the slope around � = r should be. However,
(6) only takes into consideration a phase coefficient calculation for a leg that starts in a swing phase
but not a leg that starts in the stance phase since tanh starts at -1 when � = 0.0 and ends at 1 as
� ! 1.0. In order to alleviate this issue, the equation was updated with a boolean variable f that
denotes if a leg starts in either a swing or stance phase upon initialization. If f = True, then the leg
starts in stance. The updated version of (6) is

if f = True :
⇢
cfrc = �1.0 · tanh (� · (�� r))
cvel = �cfrc

if f = False :
⇢
cfrc = tanh (� · (�� r))
cvel = �cfrc

In (5), one can see that an error calculation E = 0.0 will maximize qi(s,�), so it is important to
design a reward that can achieve E = 0.0 when the foot is doing the correct action. This is why
phase coefficients are designed as such. The reward component design which satisfies the condition
that E = 0.0 when the leg is performing the correct action is defined as

q(s,�, f)foot frc / vel = e�|E| , E = 1.0� c(�, f) ·m(s) (8)

where c(�, f) can either be positive to decrease the error or be negative to increase the error. m(s) 2
{�1, 1} is a variable that denotes the presence or absence of a foot force or a foot velocity, which
gives important information to the reward component. Since m(s) 2 {�1, 1} and c(�, f) 2 [�1, 1],
using domain calculation for composition of functions gives that [c(�, f) ·m(s)] 2 [�1, 1] as well.
Hence, E 2 [0.0, 2.0]. If the foot is doing the correct action during its respective phase, E should be
0.0, which maximizes q(s,�, f).

Using the updated versions of (6) and (8), the reward component for a uniped’s foot force and foot
velocity can be defined as

Runi(s,�, f) = ↵frc · qfrc(s,�, f) + ↵vel · qvel(s,�, f) . (9)
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Gait Boolean Array F

Trot [True, False, False, True]

Gallop [False, False, True, True]

Pace [True, False, True, False]

Pronk [False, False, False, False]

Stand [True, True, True, True]

Table 1: Boolean Array F for achieve various gaits. The indices in the array correspond to the front
right foot, front left foot, rear right foot, and rear left foot.

In addition, since the calculation of cfrc and cvel depend on r, a random variable, the reward function
then becomes

E[Runi(s,�, f)] = ↵frc · E[qfrc(s,�, f)] + ↵vel · E[qvel(s,�, f)] (10)

3.5 Extrapolation to a Quadruped

To extend the reward of a uniped to a quadruped is intuitive and simple. (8) simply becomes

q(s,�, f)foot frc / vel = e�|E| , E = float(j)�
X

j

cj(�,Fj) ·mj(s) , j = # of legs (11)

To extend the phase coefficient framework for a quadrupedal reward function, one just needs to set
j = 4. In addition, the uniped boolean variable f will become F, an array of boolean values (of
length j) rather than just a scalar.

Through domain calculation of composite functions, the new domain of

"
P
j
cj(�, f) ·mj(s)

#
2

[�j, j]. Hence, E 2 [0.0, 2j]. As long as all legs are doing the correct action during a particular gait
phase, E should be zero. If all legs are not, then q(s,�, f) will be minimized.

The new reward component for foot forces and foot velocities then becomes

E[Rquad(s,�, f)] =
X

j

(↵frc,j · E[qfrc,j(s,�,Fj)] + ↵vel,j · E[qvel,j(s,�,Fj)]) (12)

By altering the values in F, different gaits can be achieved. The various gaits that can be achieved for
a quadruped can be seen in Table 1. A visualization of one of these gaits in terms of how (6) looks is
illustrated in Figure 3.

In addition to Rquad, the reward function is supplemented by other penalties to ensure more natural
walking. The new reward quantities are defined as:

Rcmd(s) = ↵1 · qẋ(s) + ↵2 · qheight(s) + ↵3 · qorientation(s) (13)
Rsmooth(s) = ↵4 · qtorque(s) + ↵5 · qbase accel(s) + ↵6 · qaction diff(s, s(t� 1)) (14)

Here, ↵i are tuning coefficients. qẋ(s) is a reward for the normed error between a desired base
x-velocity and the quadruped’s actual base x-velocity. qheight(s) is the the reward component for how
close the quadruped base is to a desired center of mass height. qorientation(s) is a reward for the normed
quaternion similarity between the base orientation versus a desired orientation. This facilitates
a correct heading during a gait. qtorque(s) is a penalty on large torque outputs and qbase accel(s)
penalizes linear and angular acceleration of the quadruped base to prevent jerkiness in motion.
qaction diff(s, s(t� 1)) rewards small deviations between the previous action drawn from ⇡(a|s(t� 1))
and the current action ⇡(a|s(t)).
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Figure 3: Phase coefficients over normalized time � to result in a pace gait. Here, the steepness
coefficient � = 50.0 and the swing ratio r = 0.6. The solid line indicates the phase coefficient for
foot contact force while the dashed line indicates the phase coefficient for foot velocities. Here the
front right leg and rear right leg are initialized to start in a stance phase, hence cforce > 0.0 while on
the other hand, the front left and rear left legs start in a swing phase, so cvel > 0.0. After the ratio r is
reached, the coefficients switch, and the legs alternate the gait phase they were in.

With the new reward components, the final reward function to be used during training is:

E[R(s,�)] = E[Rquad(s,�, f)] +Rcmd(s) +Rsmooth(s) (15)

4 Reinforcement Learning Algorithm

4.1 Building a Quadruped Simulator

With the eventual goal of sim-to-real, it was important to build a RL gym environment for a robot
which was available in the Berkeley Hybrid Robotics Lab. The only quadruped available at the
time of building the simulator was the MIT Mini-Cheetah [5], so the low-level simulation and gym
environment were built around the Mini-Cheetah. I used PyBullet [2], an open-source physics
simulator, to create a simulated version of the MIT Mini-cheetah. The low-level simulator runs at
500 Hz, and the controller written is a joint position PD controller with proportional gains, Kp = 1.0
and Kd = 0.02. In figure 4, one can see the MIT Mini-Cheetah with a standing controller.

This low-level Python simulator is then wrapped by an OpenAI gym API to communicate with
stable-baselines3 [3], as discussed in Section 4.2.

4.2 Choosing a RL Algorithm

In [10], the authors used Proximal Policy Optimization [9], an on-policy RL algorithm developed at
OpenAI. However, they used a recurrent neural network (RNN) [8] for their actor and critic policies.
Their reasoning was that the MDP is technically a Partially Observable MDP (POMDP), so the use of
state history would benefit the actor and critic to get closer to the true state. While RNNs are good for
time dependent inputs, they also take much longer to train and are more prone to vanishing gradient
issues. To prevent such, a Long Short-Term Memory (LSTM) policy [4] can be used, but even still,
LSTMs still take much longer to train than vanilla multi-layer perceptrons (MLP).
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Figure 4: MIT Mini-Cheetah in PyBullet with a standing controller.

Due to computational limitations, discussed in Section 5.1, I opted to use a MLP for the PPO actor and
critic networks. To alleviate partial observability, the input to the policy actor is appended with state
observations from prior time steps. Hence, the policy becomes ⇡ (a|s, s(t� 1), s(t� 2)...s(t� n))
for n = the amount of state history.

4.3 Network Architecture

Both the actor and critic are both MLPs with two hidden layers, each with 128 nodes and tanh for the
activation function. The output of the neural network corresponds to 12 desired motor joint positions
bounded between [-1, 1]. The actions are then un-normalized by the low level Mini-cheetah simulator
and the angles for a standing configuration are then added to the policy output.

4.4 State Space

To prevent the discrete-time MDP from becoming stationary [6], some sort of information about the
normalized time must be incorporated into the state space. In order to achieve this, the policy is
conditioned on an encoding of information related to cycle offset parameters.

Cycle offset parameters ✓FL, ✓FR, ✓RL, and ✓RR, which correspond to the front left leg, front right leg,
rear left leg, and the rear right leg respectively, are used to provide information to the policy where
exactly a foot is in the � normalized temporal space. The offset parameters are paired up with the
boolean array F, so if Fj = True, the cycle offset would equal 0.5 as a means to separate stance legs
from swing legs for the policy in addition to providing information about �. If Fj = False, the cycle
offset would be set to 0.0.

The following, called clock inputs pi, were inputted to the actor and critic:

pj =

⇢
sin

✓
2⇡(�+ ✓j)

L

◆�
, for j = { FR, FL, RR, RL } (16)

In addition to the clock inputs, information about the phase ratio r was also inputted to the actor and
critic networks. The state space S is defined by:

S =

8
<

:

q̂ Base position, orientation, joint angles
ˆ̇q Base vel, base angular vel, joint vel
r, pj (j = { FR, FL, RR, RL }) Ratio and Clock inputs

Figure 5 shows the entire training pipeline between PPO + State History and the PyBullet Mini-
Cheetah Simulator.
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Figure 5: Control diagram of PPO + State History and Mini-cheetah simulator.

5 Training Details

5.1 Hardware

Training was performed on a Intel i5 8 GB RAM Microsoft Surface Book and an Intel i7 Dell XPS
15 9500. The former can perform approximately 5 million training steps in one day while the latter
can perform approximately 10 million in one day. This was an enormous bottleneck in the training
process of this Masters project since over 150 million steps [10] were needed to complete a training
session; therefore, to facilitate the process of hyper-parameter tuning and reward function tuning, I
decided to use an approximation of a quadruped in a plane to validate my algorithm changes.

5.2 Approximation of 3D Quadrupedal Motion

Since RL is a delicate process that is sensitive to hyper parameter tuning, it is imperative that an
optimal set of hyper parameters for PPO are used. This meant that a hyper parameter sweep was
necessary, and this process took many tries to complete. In addition, the MIT Mini-Cheetah has two
additional motors than the Cassie robot, which makes the action space much more complex and thus
requires a much longer training horizon. By extrapolation via the curse of dimensionality, training
could take around 20-30% more training iterations than those in [10]. Therefore, I decided to use a
planar approximation of a quadrupedal robot instead.

A great candidate for a planar approximation is the well-known Half Cheetah environment from the
Mujoco suite [11]. The dimensionality of the Half Cheetah is exactly half of the Mini-Cheetah, which
brings the action space down to 6 dimensions instead of 12. In addition, the Half Cheetah’s actuators
are placed in the exact configuration of the MIT Mini-Cheetah. The Half Cheetah has one motor
each for hip abduction, shoulder rotation and knee rotation for each leg which is the same for the
Mini-cheetah. For these reasons, the planar approximation of forward quadrupedal dynamics is valid.

5.2.1 Trivial Pre-Experimental Testing

Since I changed multiple aspects of the algorithm presented in [10], namely the lack of a LSTM
and how contact rewards are calculated, I wanted to make sure that the algorithmic changes were
engineered properly. In RL, it is good practice to test one’s algorithm on the simplest task that can be
achieved, so for my case, this means getting the Half Cheetah to stand as still as possible. In order to
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Figure 6: Half Cheetah standing still in mujoco using periodic reward composition.

Figure 7: Reward plots for Half Cheetah standing experiment using periodic reward composition.
By half a million training iterations, the Half Cheetah had already learned how to stand, but due
to over-fitting, the reward slowly decreases. The total reward per timestep (Eqn. (15)) is normed
between 0.0 and 1.0, so the lower plot indicates how well on average the Half Cheetah does at a
particular training time step t. However, based on how the reward was tuned, a reward threshold of
0.5 was defined as satisfactory for the task. It can be seem that the policy reward per time step never
dipped below 0.5 on average.

achieve this, all the weights in the policy must approach zero which would result in an output of all
zeros. This is the default standing configuration of the Half Cheetah.

In order to use periodic reward composition as a framework for standing, the swing ratio r was set to
1.0, and the boolean array F was set to [True, True], which means the legs would be stance legs
for the duration of �  r, which in this case is the entire period.

In figure 6, it can be seen that the policy successfully learns how to stand using periodic reward
composition. Figure 7 shows the rewards during the training and evaluation.
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Figure 8: Half Cheetah performing a pronking gait. Here, one can see that both rear and front legs
immediately lift up and then hit the ground once the swing phase is over.

Figure 9: Half Cheetah pronking gait reward plot.

5.3 Training and Evaluation

The training process for the Half Cheetah for non-stationary gaits was set up in a fashion very similar
to the process described in Section 5.2.1.

The swing ratio r was selected uniformly from a range in [0.45, 0.7] for each episode start and the
starting stance leg boolean array F was communicated to the low level Half Cheetah simulator from
the PPO algorithm. Since the Half Cheetah is a 2D approximation, some 3D gaits will appear to be
identical since there is no temporal leg shift in the third dimension. Namely, the gaits pace, trot, and
gallop all look the same in 2D, so the name of the gait could be chosen to be whichever; hence, I just
went with gallop for naming convention’s sake. Fgallop was set to [True, False]. In addition to the
alternating leg gaits exists the non-alternating gait for a quadruped, which is called a pronk; therefore,
Fpronk = [False, False].

For the PPO policy, a batch of six trajectories were used, and each worker had a trajectory length of
100 timesteps. For the exact form of (15) used during the training process, please see Table 2.
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Figure 10: Half Cheetah performing a galloping gait. Here, one can see that the Half Cheetah starts
with the front leg in swing phase while the rear leg is in stance phase. As � ! r, the front leg then is
in a stance phase while the rear leg changes to a swing phase.

Figure 11: Half Cheetah galloping gait reward plot.

6 Results

For each gait, training took approximately 2-3 days. To facilitate an efficient reward tuning process,
the galloping gait experiment was ran in parallel to the pronking gait experiment.

For the pronking training experiment, the PPO learned how to pronk in approximately 10 million
training steps. See figures 8-9. For the galloping training experiment, the PPO learned how to gallop
in approximately 20 million training steps. See figures 10-11.

In the reward plots, it can be seen that the rewards converge at about 0.5, which is lower than the
reward of the trivial standing experiment, but the result was satisfactory in a qualitative sense. The
timing of the legs in respect to � may have not been perfect and in addition, there were other terms,
as seen in (15), that may have decreased in order to facilitate the desired gait.
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Reward Component q(·) = e�|E| E

q(s,�, f)foot frc See Eqn (11)

q(s,�, f)foot vel See Eqn (11)

qẋ(s) ẋdes � ẋbase

qheight(s) zdes � zbase

qorient(s) 1� (wbase · wdes)2

qtorque(s) uT · u

qbase accel(s)
ẋbase(t)�ẋbase(t�1)

�t

qaction diff(s) u(t)� u(t+ 1)

Table 2: Reward component formulas used during Half Cheetah Training Process. Here, w is the
quaternion of the Half Cheetah base. Note that the yaw component is always zero since the Half
Cheetah is fixed in the XZ plane. t is the current training time step, not the counter time k which is
used to increment �. u is the action array which is outputted by ⇡(a|s).

7 Conclusion

From the results, it can be seen that periodic reward composition can indeed be used on quadrupedal
systems. This conclusion is valid since the planar approximation of the Half Cheetah approximate
the forward dynamics of the MIT Mini-Cheetah (or other common quadruped robots with similar
motor configurations). Without the use of LSTMs, but rather state history, a vanilla MLP policy for
PPO was able to learn how to stand, pronk and gallop.

8 Future Work

The next steps would be to train the full 3D system when the lab receives a satisfactory compute
cluster as the 3D system will need 32 trajectories, compared to only 6 for the Half Cheetah. Once the
3D system is successfully trained, the next steps would be to use dynamics randomization to facilitate
the transfer of sim-to-real.
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